Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(2): 38, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411969

RESUMO

Purpose: To investigate the molecular effect of the variant PHYH:c.678+5G>T. This variant has conflicting interpretations in the ClinVar database and a maximum allele frequency of 0.0045 in the South Asian population in gnomAD. Methods: We recruited patients from Moorfields Eye Hospital (London, UK) and Buenos Aires, Argentina, who were diagnosed with retinitis pigmentosa and found to have biallelic variants in PHYH, with at least one being c.678+5G>T. Total RNA was purified from PaxGene RNA-stabilized whole-blood samples, followed by reverse transcription to cDNA, PCR amplification of the canonical PHYH transcript, Oxford Nanopore Technologies library preparation, and single-molecule amplicon sequencing. Results: Four patients provided a blood sample. One patient had isolated retinitis pigmentosa and three had mild extraocular findings. Blood phytanic acid levels were normal in two patients, mildly elevated in one, and markedly high in the fourth. Retinal evaluation showed an intact ellipsoid zone as well as preserved autofluorescence in the macular region in three of the four patients. In all patients, we observed in-frame skipping of exons 5 and 6 in 31.1% to 88.4% of the amplicons and a smaller proportion (0% to 11.3% of amplicons) skipping exon 6 only. Conclusions: We demonstrate a significant effect of PHYH:c.678+5G>T on splicing of the canonical transcript. The in-frame nature of this may be in keeping with a mild presentation and higher prevalence in the general population. These data support the classification of the variant as pathogenic, and patients harboring a biallelic genotype should undergo phytanic acid testing.


Assuntos
Doença de Refsum , Retinite Pigmentosa , Humanos , Ácido Fitânico , Retinite Pigmentosa/diagnóstico , Retinite Pigmentosa/genética , Éxons/genética , RNA/genética , Oxigenases de Função Mista
2.
Ophthalmol Retina ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219857

RESUMO

PURPOSE: Inherited retinal disease (IRD) is a leading cause of blindness. Recent advances in gene-directed therapies highlight the importance of understanding the genetic basis of these disorders. This study details the molecular spectrum in a large United Kingdom (UK) IRD patient cohort. DESIGN: Retrospective study of electronic patient records. PARTICIPANTS: Patients with IRD who attended the Genetics Service at Moorfields Eye Hospital between 2003 and July 2020, in whom a molecular diagnosis was identified. METHODS: Genetic testing was undertaken via a combination of single-gene testing, gene panel testing, whole exome sequencing, and more recently, whole genome sequencing. Likely disease-causing variants were identified from entries within the genetics module of the hospital electronic patient record (OpenEyes Electronic Medical Record). Analysis was restricted to only genes listed in the Genomics England PanelApp R32 Retinal Disorders panel (version 3.24), which includes 412 genes associated with IRD. Manual curation ensured consistent variant annotation and included only plausible disease-associated variants. MAIN OUTCOME MEASURES: Detailed analysis was performed for variants in the 5 most frequent genes (ABCA4, USH2A, RPGR, PRPH2, and BEST1), as well as for the most common variants encountered in the IRD study cohort. RESULTS: We identified 4415 individuals from 3953 families with molecularly diagnosed IRD (variants in 166 genes). Of the families, 42.7% had variants in 1 of the 5 most common IRD genes. Complex disease alleles contributed to disease in 16.9% of affected families with ABCA4-associated retinopathy. USH2A exon 13 variants were identified in 43% of affected individuals with USH2A-associated IRD. Of the RPGR variants, 71% were clustered in the ORF15 region. PRPH2 and BEST1 variants were associated with a range of dominant and recessive IRD phenotypes. Of the 20 most prevalent variants identified, 5 were not in the most common genes; these included founder variants in CNGB3, BBS1, TIMP3, EFEMP1, and RP1. CONCLUSIONS: We describe the most common pathogenic IRD alleles in a large single-center multiethnic UK cohort and the burden of disease, in terms of families affected, attributable to these variants. Our findings will inform IRD diagnoses in future patients and help delineate the cohort of patients eligible for gene-directed therapies under development. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762234

RESUMO

The CRB1 gene plays a role in retinal development and its maintenance. When disrupted, it gives a range of phenotypes such as early-onset severe retinal dystrophy/Leber congenital amaurosis (EOSRD/LCA), retinitis pigmentosa (RP), cone-rod dystrophy (CORD) and macular dystrophy (MD). Studies in CRB1 retinopathies have shown thickening and coarse lamination of retinal layers resembling an immature retina. Its role in foveal development has not yet been described; however, this retrospective study is the first to report foveal hypoplasia (FH) presence in a CRB1-related retinopathy cohort. Patients with pathogenic biallelic CRB1 variants from Moorfields Eye Hospital, London, UK, were collected. Demographic, clinical data and SD-OCT analyses with FH structural grading were performed. A total of 15 (48%) patients had EOSRD/LCA, 11 (35%) MD, 3 (9%) CORD and 2 (6%) RP. FH was observed in 20 (65%; CI: 0.47-0.79) patients, all of whom were grade 1. A significant difference in BCVA between patients with FH and without was found (p = 0.014). BCVA continued to worsen over time in both groups (p < 0.001), irrespective of FH. This study reports FH in a CRB1 cohort, supporting the role of CRB1 in foveal development. FH was associated with poorer BCVA and abnormal retinal morphology. Nonetheless, its presence did not alter the disease progression.


Assuntos
Distrofias de Cones e Bastonetes , Anormalidades do Olho , Amaurose Congênita de Leber , Degeneração Macular , Distrofias Retinianas , Retinite Pigmentosa , Humanos , Estudos Retrospectivos , Retina , Distrofias Retinianas/genética , Retinite Pigmentosa/genética , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
4.
Ophthalmology ; 130(12): 1327-1335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544434

RESUMO

PURPOSE: To describe the largest, most phenotypically and genetically diverse cohort of patients with inherited retinal disease (IRD)-related Coats-like vasculopathy (CLV). DESIGN: Multicenter retrospective cohort study. PARTICIPANTS: A total of 67 patients with IRD-related CLV. METHODS: Review of clinical notes, ophthalmic imaging, and molecular diagnosis from 2 international centers. MAIN OUTCOME MEASURES: Visual function, retinal imaging, management, and response to treatment were evaluated and correlated. RESULTS: The prevalence of IRD-related CLV was 0.5%; 54% of patients had isolated retinitis pigmentosa (RP), 21% had early-onset severe retinal dystrophy, and less frequent presentations were syndromic RP, sector RP, cone-rod dystrophy, achromatopsia, PAX6-related dystrophy, and X-linked retinoschisis. The overall age of patients at CLV diagnosis was 30.7 ± 16.9 years (1-83). Twenty-one patients (31%) had unilateral CLV, and the most common retinal features were telangiectasia, exudates, and exudative retinal detachment (ERD) affecting the inferior and temporal retina. Macular edema/schisis was observed in 26% of the eyes, and ERD was observed in 63% of the eyes. Fifty-four patients (81%) had genetic testing, 40 of whom were molecularly solved. Sixty-six eyes (58%) were observed, 17 eyes (15%) were treated with a single modality, and 30 eyes (27%) had a combined approach. Thirty-five eyes (31%) were "good responders," 42 eyes (37%) were "poor responders," 22 eyes (19%) had low vision at baseline and were only observed, and 12 eyes (11%) did not have longitudinal assessment. Twenty-one observed eyes (62%) responded well versus 14 (33%) treated eyes. Final best-corrected visual acuity was significantly worse than baseline (P = 0.002); 40 patients (60%) lost 15 ETDRS letters or more over follow-up in 1 or both eyes, and 21 patients (31%) progressed to more advanced stages of visual impairment. CONCLUSIONS: Inherited retinal disease-related CLV is rare, sporadic, and mostly bilateral; there is no gender predominance, and it can occur in diverse types of IRD at any point of the disease, with a mean onset in the fourth decade of life. Patients with IRD-related CLV who have decreased initial visual acuity, ERD, CLV changes affecting 2 or more retinal quadrants, and CRB1-retinopathy may be at higher risk of a poor prognosis. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Distrofias de Cones e Bastonetes , Descolamento Retiniano , Distrofias Retinianas , Retinite Pigmentosa , Baixa Visão , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Prevalência , Estudos Retrospectivos , Retina , Proteínas do Olho/genética , Proteínas de Membrana , Proteínas do Tecido Nervoso
5.
Br J Ophthalmol ; 107(12): 1925-1935, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36192130

RESUMO

BACKGROUND/AIMS: Microphthalmia, anophthalmia and coloboma (MAC) are clinically and genetically heterogenous rare developmental eye conditions, which contribute to a significant proportion of childhood blindness worldwide. Clear understanding of MAC aetiology and comorbidities is essential to providing patients with appropriate care. However, current management is unstandardised and molecular diagnostic rates remain low, particularly in those with unilateral presentation. To further understanding of clinical and genetic management of patients with MAC, we charted their real-world experience to ascertain optimal management pathways and yield from molecular analysis. METHODS: A prospective cohort study of consecutive patients with MAC referred to the ocular genetics service at Moorfields Eye Hospital between 2017-2020. RESULTS: Clinical analysis of 50 MAC patients (15 microphthalmia; 2 anophthalmia; 11 coloboma; and 22 mixed) from 44 unrelated families found 44% had additional ocular features (complex) and 34% had systemic involvement, most frequently intellectual/developmental delay (8/17). Molecular analysis of 39 families using targeted gene panels, whole genome sequencing and microarray comparative genomic hybridisation identified genetic causes in, 28% including novel variants in six known MAC genes (SOX2, KMT2D, MAB21L2, ALDH1A3, BCOR and FOXE3), and a molecular diagnostic rate of 33% for both bilateral and unilateral cohorts. New phenotypic associations were found for FOXE3 (bilateral sensorineural hearing loss) and MAB21L2 (unilateral microphthalmia). CONCLUSION: This study highlights the importance of thorough clinical and molecular phenotyping of MAC patients to provide appropriate multidisciplinary care. Routine genetic testing for both unilateral and bilateral cases in the clinic may increase diagnostic rates in the future, helping elucidate genotype-phenotype correlations and informing genetic counselling.


Assuntos
Anoftalmia , Coloboma , Anormalidades do Olho , Microftalmia , Humanos , Anoftalmia/diagnóstico , Anoftalmia/genética , Anoftalmia/terapia , Microftalmia/diagnóstico , Microftalmia/genética , Microftalmia/terapia , Coloboma/diagnóstico , Coloboma/genética , Estudos Prospectivos , Anormalidades do Olho/diagnóstico , Proteínas do Olho/genética , Peptídeos e Proteínas de Sinalização Intracelular
6.
Front Genet ; 13: 977806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072665

RESUMO

Idiopathic infantile nystagmus (IIN) is an inherited disorder occurring in the first 6 months of life, with no underlying retinal or neurological etiologies and is predominantly caused by mutations in the FRMD7 gene. IIN poses a diagnostic challenge as underlying pre-symptomatic "multisystem" disorders varying from benign to life-threatening should first be ruled out before nystagmus can be labeled as idiopathic. A multidisciplinary approach including multimodal ocular investigations and next-generation sequencing with whole-genome sequencing (WGS) or targeted gene panel testing is required to delineate the exact etiology. We report the clinical and genetic outcomes of 22 patients, from 22 unrelated families of diverse ethnicities, with IIN seen in the ocular genetics service at Moorfields Eye Hospital NHS Foundation Trust between 2016 and 2022. Thirty-six percent (8/22) received a confirmed molecular diagnosis with eight mutations identified in two genes (seven in FRMD7 including one novel variant c.706_707del; p. [Lys236Alafs*66], and one in GPR143). This study expands the mutational spectrum of IIN and highlights the significant role of an integrated care pathway and broader panel testing in excluding underlying pathologies.

7.
Genes (Basel) ; 12(4)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808351

RESUMO

Albinism encompasses a group of hereditary disorders characterized by reduced or absent ocular pigment and variable skin and/or hair involvement, with syndromic forms such as Hermansky-Pudlak syndrome and Chédiak-Higashi syndrome. Autosomal recessive oculocutaneous albinism (OCA) is phenotypically and genetically heterogenous (associated with seven genes). X-linked ocular albinism (OA) is associated with only one gene, GPR143. We report the clinical and genetic outcomes of 44 patients, from 40 unrelated families of diverse ethnicities, with query albinism presenting to the ocular genetics service at Moorfields Eye Hospital NHS Foundation Trust between November 2017 and October 2019. Thirty-six were children (≤ 16 years) with a median age of 31 months (range 2-186), and eight adults with a median age of 33 years (range 17-39); 52.3% (n = 23) were male. Genetic testing using whole genome sequencing (WGS, n = 9) or a targeted gene panel (n = 31) gave an overall diagnostic rate of 42.5% (44.4% (4/9) with WGS and 41.9% (13/31) with panel testing). Seventeen families had confirmed mutations in TYR (n = 9), OCA2, (n = 4), HPS1 (n = 1), HPS3 (n = 1), HPS6 (n = 1), and GPR143 (n = 1). Molecular diagnosis of albinism remains challenging due to factors such as missing heritability. Differential diagnoses must include SLC38A8-associated foveal hypoplasia and syndromic forms of albinism.


Assuntos
Albinismo Ocular/diagnóstico , Albinismo Oculocutâneo/diagnóstico , Testes Genéticos/métodos , Mutação , Adolescente , Adulto , Albinismo Ocular/genética , Albinismo Oculocutâneo/genética , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Estudos Prospectivos , Sequenciamento Completo do Genoma/métodos , Adulto Jovem
8.
Genes (Basel) ; 12(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494148

RESUMO

Childhood cataract affects 2.5-3.5 per 10,000 children in the UK, with a genetic mutation identified in 50-90% of bilateral cases. However, cataracts can also manifest in adolescence and early adulthood in isolation, as part of a complex ocular phenotype or with systemic features making accurate diagnosis more challenging. We investigate our real-world experience through a retrospective review of consecutive bilateral cataract patients (0-25 years) presenting to the ocular genetics service at Moorfields Eye Hospital between 2017 and 2020. Fifty-four patients from 44 unrelated families were identified, with a median age of 13.5 years (range 1 to 68 years) and a median age at diagnosis of 43.9 months IQR (1.7-140.3 months); 40.7% were female and 46.3% were Caucasian. Overall, 37 patients from 27 families (61.4%) were genetically solved (50%) or likely solved (additional 11.4%), with 26 disease-causing variants (8 were novel) in 21 genes; the most common were crystallin genes, in 8 (29.6%) families, with half occurring in the CRYBB2 gene. There was no significant difference in the molecular diagnostic rates between sporadic and familial inheritance (P = 0.287). Associated clinical diagnoses were retinal dystrophies in five (18.5%) and aniridia in three (11.1%) families. Bilateral cataracts were the presenting feature in 27.3% (6/22) of either complex or syndromic cases, and isolated cataract patients were 11.5 years younger (rank-sum Z = 3.668, P = 0.0002). Prompt genetic investigation with comprehensive panel testing can aid with diagnosis and optimise management of cataract patients.


Assuntos
Catarata/diagnóstico , Catarata/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Fenótipo , Adolescente , Adulto , Fatores Etários , Alelos , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Adulto Jovem
9.
Ther Adv Ophthalmol ; 12: 2515841420954592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015543

RESUMO

Genetic eye diseases affect around one in 1000 people worldwide for which the molecular aetiology remains unknown in the majority. The identification of disease-causing gene variant(s) allows a better understanding of the disorder and its inheritance. There is now an approved retinal gene therapy for autosomal recessive RPE65-retinopathy, and numerous ocular gene/mutation-targeted clinical trials underway, highlighting the importance of establishing a genetic diagnosis so patients can fully access the latest research developments and treatment options. In this review, we will provide a practical guide to managing patients with these conditions including an overview of inheritance patterns, required pre- and post-test genetic counselling, different types of cytogenetic and genetic testing available, with a focus on next generation sequencing using targeted gene panels, whole exome and genome sequencing. We will expand on the pros and cons of each modality, variant interpretation and options for family planning for the patient and their family. With the advent of genomic medicine, genetic screening will soon become mainstream within all ophthalmology subspecialties for prevention of disease and provision of precision therapeutics.

10.
Am J Med Genet C Semin Med Genet ; 184(3): 578-589, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32830442

RESUMO

Overall, approximately one-quarter of patients with genetic eye diseases will receive a molecular diagnosis. Patients with developmental eye disorders face a number of diagnostic challenges including phenotypic heterogeneity with significant asymmetry, coexisting ocular and systemic disease, limited understanding of human eye development and the associated genetic repertoire, and lack of access to next generation sequencing as regarded not to impact on patient outcomes/management with cost implications. Herein, we report our real world experience from a pediatric ocular genetics service over a 12 month period with 72 consecutive patients from 62 families, and that from a cohort of 322 patients undergoing whole genome sequencing (WGS) through the Genomics England 100,000 Genomes Project; encompassing microphthalmia, anophthalmia, ocular coloboma (MAC), anterior segment dysgenesis anomalies (ASDA), primary congenital glaucoma, congenital cataract, infantile nystagmus, and albinism. Overall molecular diagnostic rates reached 24.9% for those recruited to the 100,000 Genomes Project (73/293 families were solved), but up to 33.9% in the clinic setting (20/59 families). WGS was able to improve genetic diagnosis for MAC patients (15.7%), but not for ASDA (15.0%) and congenital cataracts (44.7%). Increased sample sizes and accurate human phenotype ontology (HPO) terms are required to improve diagnostic accuracy. The significant mixed complex ocular phenotypes distort these rates and lead to missed variants if the correct gene panel is not applied. Increased molecular diagnoses will help to explain the genotype-phenotype relationships of these developmental eye disorders. In turn, this will lead to improved integrated care pathways, understanding of disease, and future therapeutic development.


Assuntos
Oftalmopatias/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Patologia Molecular , Pediatria/tendências , Albinismo/diagnóstico , Albinismo/epidemiologia , Albinismo/genética , Catarata/diagnóstico , Catarata/epidemiologia , Catarata/genética , Criança , Coloboma/diagnóstico , Coloboma/epidemiologia , Coloboma/genética , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/epidemiologia , Anormalidades do Olho/genética , Oftalmopatias/epidemiologia , Oftalmopatias/genética , Feminino , Glaucoma/diagnóstico , Glaucoma/epidemiologia , Glaucoma/genética , Humanos , Lactente , Masculino , Mutação/genética , Nistagmo Congênito/diagnóstico , Nistagmo Congênito/epidemiologia , Nistagmo Congênito/genética , Reino Unido/epidemiologia
11.
Ophthalmology ; 127(10): 1384-1394, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32423767

RESUMO

PURPOSE: In a large cohort of molecularly characterized inherited retinal disease (IRD) families, we investigated proportions with disease attributable to causative variants in each gene. DESIGN: Retrospective study of electronic patient records. PARTICIPANTS: Patients and relatives managed in the Genetics Service of Moorfields Eye Hospital in whom a molecular diagnosis had been identified. METHODS: Genetic screening used a combination of single-gene testing, gene panel testing, whole exome sequencing, and more recently, whole genome sequencing. For this study, genes listed in the Retinal Information Network online resource (https://sph.uth.edu/retnet/) were included. Transcript length was extracted for each gene (Ensembl, release 94). MAIN OUTCOME MEASURES: We calculated proportions of families with IRD attributable to variants in each gene in the entire cohort, a cohort younger than 18 years, and a current cohort (at least 1 patient encounter between January 1, 2017, and August 2, 2019). Additionally, we explored correlation between numbers of families and gene transcript length. RESULTS: We identified 3195 families with a molecular diagnosis (variants in 135 genes), including 4236 affected individuals. The pediatric cohort comprised 452 individuals from 411 families (66 genes). The current cohort comprised 2614 families (131 genes; 3130 affected individuals). The 20 most frequently implicated genes overall (with prevalence rates per families) were as follows: ABCA4 (20.8%), USH2A (9.1%), RPGR (5.1%), PRPH2 (4.6%), BEST1 (3.9%), RS1 (3.5%), RP1 (3.3%), RHO (3.3%), CHM (2.7%), CRB1 (2.1%), PRPF31 (1.8%), MY07A (1.7%), OPA1 (1.6%), CNGB3 (1.4%), RPE65 (1.2%), EYS (1.2%), GUCY2D (1.2%), PROM1 (1.2%), CNGA3 (1.1%), and RDH12 (1.1%). These accounted for 71.8% of all molecularly diagnosed families. Spearman coefficients for correlation between numbers of families and transcript length were 0.20 (P = 0.025) overall and 0.27 (P = 0.017), -0.17 (P = 0.46), and 0.71 (P = 0.047) for genes in which variants exclusively cause recessive, dominant, or X-linked disease, respectively. CONCLUSIONS: Our findings help to quantify the burden of IRD attributable to each gene. More than 70% of families showed pathogenic variants in 1 of 20 genes. Transcript length (relevant to gene delivery strategies) correlated significantly with numbers of affected families (but not for dominant disease).


Assuntos
DNA/genética , Proteínas do Olho/genética , Mutação , Retina/patologia , Doenças Retinianas/genética , Análise Mutacional de DNA , Proteínas do Olho/metabolismo , Feminino , Testes Genéticos , Humanos , Masculino , Linhagem , Doenças Retinianas/congênito , Doenças Retinianas/diagnóstico , Estudos Retrospectivos , Reino Unido
12.
Am J Hum Genet ; 100(1): 75-90, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28041643

RESUMO

Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.


Assuntos
Análise Mutacional de DNA , Variação Genética/genética , Genoma Humano/genética , Doenças Retinianas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Sequência de Bases , Coroideremia/genética , Etnicidade/genética , Exoma/genética , Feminino , Genes Recessivos/genética , Humanos , Íntrons/genética , Masculino , Mutação , Doenças Raras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...